Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Adicionar filtros

Tipo de documento
Intervalo de ano
1.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.12.29.522275

RESUMO

The Omicron variant continuously evolves under the humoral immune pressure obtained by vaccination and SARS-CoV-2 infection and the resultant Omicron subvariants exhibit further immune evasion and antibody escape. Engineered ACE2 decoy composed of high-affinity ACE2 and IgG1 Fc domain is an alternative modality to neutralize SARS-CoV-2 and we previously reported its broad spectrum and therapeutic potential in rodent models. Here, we show that engineered ACE2 decoy retains the neutralization activity against Omicron subvariants including the currently emerging XBB and BQ.1 which completely evade antibodies in clinical use. The culture of SARS-CoV-2 under suboptimal concentration of neutralizing drugs generated SARS-CoV-2 mutants escaping wild-type ACE2 decoy and monoclonal antibodies, whereas no escape mutant emerged against engineered ACE2 decoy. As the efficient drug delivery to respiratory tract infection of SARS-CoV-2, inhalation of aerosolized decoy treated mice infected with SARS-CoV-2 at a 20-fold lower dose than the intravenous administration. Finally, engineered ACE2 decoy exhibited the therapeutic efficacy for COVID-19 in cynomolgus macaques. Collectively, these results indicate that engineered ACE2 decoy is the promising therapeutic strategy to overcome immune-evading SARS-CoV-2 variants and that liquid aerosol inhalation can be considered as a non-invasive approach to enhance efficacy in the treatment of COVID-19.


Assuntos
COVID-19 , Síndrome Respiratória Aguda Grave
2.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.08.01.502275

RESUMO

Many patients with severe COVID-19 suffer from pneumonia, and thus elucidation of the mechanisms underlying the development of such severe pneumonia is important. The ORF8 protein is a secreted protein of SARS-CoV-2, whose in vivo function is not well understood. Here, we analyzed the function of ORF8 protein by generating ORF8-knockout SARS-CoV-2. We found that the lung inflammation observed in wild-type SARS-CoV-2-infected hamsters was decreased in ORF8-knockout SARS-CoV-2-infected hamsters. Administration of recombinant ORF8 protein to hamsters also induced lymphocyte infiltration into the lungs. Similar pro-inflammatory cytokine production was observed in primary human monocytes treated with recombinant ORF8 protein. Furthermore, we demonstrate that the serum ORF8 protein levels are correlated well with clinical markers of inflammation. These results demonstrated that the ORF8 protein is a viral cytokine of SARS-CoV-2 involved in the in the immune dysregulation observed in COVID-19 patients, and that the ORF8 protein could be a novel therapeutic target in severe COVID-19 patients.


Assuntos
Pneumonia , Síndrome Respiratória Aguda Grave , COVID-19 , Inflamação
3.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.07.09.499414

RESUMO

To assess the frequency of SARS-CoV-2 infection enhancing antibodies in the general population, we searched over 64 million heavy chain antibody sequences from healthy and COVID-19 patient repertoires for sequences similar to 11 previously reported enhancing antibodies. Although the distribution of sequence identities was similar in COVID-19 and healthy repertoires, the COVID-19 hits were significantly more clonally expanded than healthy hits. Furthermore, among the tested hits, 17 out of 94 from COVID-19, compared with 2 out of 96 from healthy, bound to the enhancing epitope. A total of 6 of the 19 epitope-binding antibodies enhanced ACE2 receptor binding to the spike protein. Together, this study revealed that enhancing antibodies are far more frequent in COVID-19 patients than in healthy donors, but a reservoir of potential enhancing antibodies exists in healthy donors that could potentially mature to actual enhancing antibodies upon infection.


Assuntos
COVID-19
4.
researchsquare; 2021.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-963907.v1

RESUMO

Breakthrough infection is often observed for the SARS-CoV-2 Delta variant, and neutralizing antibody levels are associated with vaccine efficiency 1 . Recent studies revealed that not only anti-receptor binding domain (RBD) antibodies 2 but also antibodies against the N-terminal domain (NTD) play important roles in positively 3,4 or negatively 4-8 controlling SARS-CoV-2 infectivity. Here, we found that the Delta variant completely escaped from anti-NTD neutralizing antibodies, while increasing responsiveness to anti-NTD infectivity-enhancing antibodies. Cryo-EM analysis of the Delta spike revealed that epitopes for anti-NTD neutralizing antibodies are structurally divergent, whereas epitopes for enhancing antibodies are well conserved with wild-type spike protein. Although Pfizer-BioNTech BNT162b2-immune sera neutralized the original Delta variant, when major anti-RBD neutralizing antibody epitopes remaining in the Delta variant were disrupted, some BNT162b2-immune sera not only lost neutralizing activity but became infection-enhanced. The enhanced infectivity disappeared when the Delta NTD was substituted with the wild-type NTD. Sera of mice immunized by Delta spike, but not wild-type spike, consistently neutralized the Delta variant lacking anti-RBD antibody epitopes without enhancing infectivity. Importantly, SARS-CoV-2 variants with similar mutations in the RBD have already emerged according to the GISAID database and their pseudoviruses were resistant to some BNT162b2-immune sera. These findings demonstrate that mutations in the NTD, as well as the RBD, play an important role in antibody escape by SARS-CoV-2. Development of effective vaccines against emerging variants will be necessary, not only to protect against infection, but also to prevent further mutation of SARS-CoV-2.

5.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.08.22.457114

RESUMO

mRNA-based vaccines provide effective protection against most common SARS-CoV-2 variants. However, identifying likely breakthrough variants is critical for future vaccine development. Here, we found that the Delta variant completely escaped from anti-N-terminal domain (NTD) neutralizing antibodies, while increasing responsiveness to anti-NTD infectivity-enhancing antibodies. Although Pfizer-BioNTech BNT162b2-immune sera neutralized the Delta variant, when four common mutations were introduced into the receptor binding domain (RBD) of the Delta variant (Delta 4+), some BNT162b2-immune sera lost neutralizing activity and enhanced the infectivity. Unique mutations in the Delta NTD were involved in the enhanced infectivity by the BNT162b2-immune sera. Sera of mice immunized by Delta spike, but not wild-type spike, consistently neutralized the Delta 4+ variant without enhancing infectivity. Given the fact that a Delta variant with three similar RBD mutations has already emerged according to the GISAID database, it is necessary to develop vaccines that protect against such complete breakthrough variants.

6.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.12.18.423358

RESUMO

SARS-CoV-2 infection causes severe symptoms in a subset of patients, suggesting the presence of certain unknown risk factors. Although antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike have been shown prevent SARS-CoV-2 infection, the effects of antibodies against other spike protein domains are largely unknown. Here, we screened a series of anti-spike monoclonal antibodies from COVID-19 patients, and found that some of antibodies against the N-terminal domain (NTD) dramatically enhanced the binding capacity of the spike protein to ACE2, and thus increased SARS-CoV2 infectivity. Surprisingly, mutational analysis revealed that all the infectivity-enhancing antibodies recognized a specific site on the surface of the NTD. The antibodies against this infectivity-enhancing site were detected in all samples of hospitalized COVID-19 patients in the study. However, the ratio of infectivity-enhancing antibodies to neutralizing antibodies differed among patients. Furthermore, the antibodies against the infectivity-enhancing site were detected in 3 out of 48 uninfected donors, albeit at low levels. These findings suggest that the production of antibodies against SARS-CoV-2 infectivity-enhancing site could be considered as a possible exacerbating factors for COVID-19 and that a spike protein lacking such antibody epitopes may be required for safe vaccine development, especially for individuals with pre-existing enhancing antibodies.


Assuntos
COVID-19
7.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.12.18.423439

RESUMO

The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has presented a crisis for global healthcare systems. Human SARS-CoV-2 infection can result in coronavirus disease 2019 (COVID-19), which has been characterised as an acute respiratory illness, with most patients displaying flu-like symptoms, such as a fever, cough and dyspnoea. However, the range and severity of individual symptoms experienced by patients can vary significantly, indicating a role for host genetics in impacting the susceptibility and severity of COVID-19 disease. Whilst most symptomatic infections are known to manifest in mild to moderate respiratory symptoms, severe pneumonia and complications including cytokine release syndrome, which can lead to multi-organ dysfunction, have also been observed in cases worldwide. Global initiatives to sequence the genomes of patients with COVID-19 have driven an expanding new field of host genomics research, to characterise the genetic determinants of COVID-19 disease. The functional annotation and analysis of incoming genomic data, within a clinically relevant turnaround time, is therefore imperative given the importance and urgency of research efforts to understand the biology of SARS-CoV-2 infection and disease. To address these requirements, we developed SNPnexus COVID. This is a web-based variant annotation tool, powered by the SNPnexus software.


Assuntos
Infecções por Coronavirus , Sinais e Sintomas Respiratórios , Febre , Pneumonia , Tosse , COVID-19 , Insuficiência Respiratória
8.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.12.18.423467

RESUMO

Reverse Transcriptase - Polymerase Chain Reaction (RT-PCR) is the gold standard as diagnostic assays for the detection of COVID-19 and the specificity and sensitivity of these assays depend on the complementarity of the RT-PCR primers to the genome of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the virus mutates over time during replication cycles, there is an urgent need to continuously monitor the virus genome for appearances of mutations and mismatches in the PCR primers used in these assays. Here we present assayM, a web application to explore and monitor mutations introduced in the primer and probe sequences published by the World Health Organisation (WHO) or in any custom-designed assay primers for SARS-CoV-2 detection assays in globally available SARS-CoV-2 genome datasets.


Assuntos
COVID-19 , Infecções por Coronavirus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA